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Abstract

Forest inventories from the intact rainforests of the Amazon indicate increasing rates of

carbon gain over the past three decades. However, such estimates have been questioned

because of the poor spatial representation of the sampling plots and the incomplete

understanding of purported mechanisms behind the increases in biomass. Ecosystem

models, when used in conjunction with satellite data, are useful in examining the carbon

budgets in regions where the observations of carbon flows are sparse. The purpose of this

study is to explain observed trends in normalized difference vegetation index (NDVI)

using climate observations and ecosystem models of varying complexity in the western

Amazon basin for the period of 1984–2002. We first investigated trends in NDVI and

found a positive trend during the study period, but the positive trend in NDVI was

observed only in the months from August to December. Then, trends in various climate

parameters were calculated, and of the climate variables considered, only shortwave

radiation was found to have a corresponding significant positive trend. To compare the

impact of each climate component, as well as increasing carbon dioxide (CO2) concen-

trations, on evergreen forests in the Amazon, we ran three ecosystem models (CASA,

Biome-BGC, and LPJ), and calculated monthly net primary production by changing a

climate component selected from the available climate datasets. As expected, CO2

fertilization effects showed positive trends throughout the year and cannot explain the

positive trend in NDVI, which was observed only for the months of August to December.

Through these simulations, we demonstrated that the positive trend in shortwave

radiation can explain the positive trend in NDVI observed for the period from August

to December. We conclude that the positive trend in shortwave radiation is the most

likely driver of the increasing trend in NDVI and the corresponding observed increases

in forest biomass.
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Introduction

The dynamics of the evergreen forests in the Amazon

basin have a substantial impact on worldwide climate

systems and play an important role in the regulation of

atmospheric carbon dioxide (CO2) concentrations.

Therefore, understanding the response of the Amazo-

nian evergreen forests to climate change is critical for

predicting the future global climate (Cramer et al., 2004).

Early numerical modeling studies for this region fo-

cused on the impact of deforestation on regional climate

change and predicted that deforestation would have

irreversible effects (by decreasing both precipitation

and evapotranspiration) on the basin’s hydrologic cycle

(Salati & Vose, 1984). Along with the impacts of defor-

estation, it is expected that the response of the Amazo-

nian forests to climate change accompanied by elevated

CO2 concentrations is the most important factor for
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predicting the future carbon balance of these ecosys-

tems (Malhi, 2008). To assess the effect of these anthro-

pogenic and climatological influences on future

Amazon ecosystems, it is crucial to understand the

mechanisms regulating the current state of the carbon

balance and hydrologic cycles of the Amazon basin.

Despite large uncertainty due to the insufficient number

of observations over such a large region, a number of

studies of the Amazon carbon balance have shown that

these tropical evergreen forests have been sequestering

carbon for the last two decades (see the review paper by

Ometto et al., 2005). An intercomparison study of atmo-

spheric CO2 transportation models [the Atmospheric

Tracer Transport Model Intercomparison Project (Trans-

com)] showed, although with large uncertainty in the

estimates, that during the 1990s the carbon balance of

tropical South America was almost neutral, while South

America as a whole served as a small source of CO2

(Gurney et al., 2002). This result implied that the ever-

green forest ecosystems of the Amazon must function as

carbon sinks to offset carbon emissions resulting from

land-use change and fire (Houghton et al., 2000). Other

plot-based studies provided proof that forest biomass

has been increasing in the Amazon basin for the last few

decades (Baker et al., 2004; Lewis et al., 2004b; Phillips

et al., 2004), indicating that these evergreen forest eco-

systems sequestered carbon in most of the Amazon

basin. Also, measures of net ecosystem exchange using

eddy covariance techniques revealed that carbon up-

take was occurring at many sites [e.g. Reserva Jaru

(Grace et al., 1995), Reserva Biológica do Cuieiras (Malhi

et al., 1998), and Caxiuaña (Carswell et al., 2002), except

for Tapajós (Saleska et al., 2003)].

Optical remote sensing and ecosystem model inter-

comparison are viable tools for deriving estimates of the

amount of vegetation, and clarifying the driving me-

chanism and flows of carbon in regions where a limited

number of carbon exchange observations are available.

Satellite-based measures of vegetation density over vast

areas can be derived through vegetation indexes such as

the normalized difference vegetation index (NDVI)

from the Advanced Very High Resolution Radiometer

(AVHRR) satellite instrument, for which a global long-

term record is available since 1981. However, optical

remote sensing observations of tropical evergreen for-

ests are complicated by residual cloud contamination

(even after monthly compositing procedures are ap-

plied) and by the saturation of the band reflectance

for regions with very dense vegetation, and require

independent validation through the use of ecosystem

models or field measurements.

Although a number of intercomparison studies of

ecosystem carbon models have been performed at the

global scale (Cramer et al., 1999), there are only few

regional modeling studies for the tropics which are

based on individual models. Early ecosystem model-

based studies of the Amazon basin found that net

primary production (NPP, the net amount of carbon

fixed in vegetation by the photosynthetic process) was

sensitive to changes in soil moisture resulting from

variability in precipitation, and that heterotrophic re-

spiration increased with temperature (Tian et al., 1998).

Recently, both diagnostic (Nemani et al., 2003; Hicke,

2005) and prognostic (Ichii et al., 2005) ecosystem mod-

els reported that the carbon budget of the Amazon

basin is more sensitive to the interannual variation in

shortwave radiation. For example, the Biome-BGC re-

sults of Ichii et al. (2005) indicated that the interannual

variability in gross primary production (GPP, the

amount of carbon absorbed by photosynthesis dis-

counted for carbon lost through respiration) was corre-

lated with the interannual variability in shortwave

radiation. Others suggest that along with increases in

solar radiation and air temperature, increases in atmo-

spheric CO2 concentrations have also contributed to

accelerated growth of tropical forests in the Amazon

basin (Lewis et al., 2004a, b).

The goal of this study is to understand whether the

observed carbon sequestration in evergreen forest

ecosystems of the Amazon basin could be explai-

ned by changes in climate alone, or whether other

potential drivers, such as elevated CO2 concentrations

must also be considered. To answer this question, we

used multiple ecosystem models in combination

with multiple climate datasets to simulate and account

for the observed trend in the NOAA/AVHRR NDVI

data.

Materials and methods

Study area

For our modeling analysis, we selected a study region of

the western Amazon extending between 0–101S and

60–701W (Fig. 1b). This is the most humid region of

the Amazon basin, with mean annual precipitation

42000 mm, and is characterized by smaller rates of

deforestation compared with regions in the eastern

and southern parts of the Amazon basin (Asner et al.,

2005), eliminating the need to model deforestation.

Also, in this region atmospheric contamination from

aerosols caused by biomass burning is small compared

with the southeastern Amazon region (Kobayashi &

Dye, 2005). Huete et al. (2006) observed that the seasonal

dynamics of the enhanced vegetation indices (EVI)

measured using the MODerate Resolution Imaging

Spectroradiometer (MODIS) differ in the eastern and

western parts of the Amazon basin. Myneni et al. (2007)
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also reported a good correlation between the dynamics

of satellite observed leaf area index (LAI) and short-

wave radiation, rather than precipitation, in the western

Amazon. However, the western Amazon has fewer

observations of both climate and vegetation compared

with the Eastern Amazon. These factors led us to

further analyze the carbon balance in the western

Amazon using ecosystem models.

Trend analysis of NDVI datasets

We used a 1982–2003 subset of the 8 km resolution

NDVI data from the Global Inventory Modeling and

Mapping Studies (GIMMS) group. The GIMMS data

record is derived from observations collected by the

AVHRR instrument onboard the National Oceanic and

Atmospheric Administration satellite series (Tucker

et al., 2005). We used the GIMMS data to analyze the

interannual variability in vegetation productivity over

the western Amazon in response to changes in climatic

variables and atmospheric CO2 concentrations. The

GIMMS NDVI long-term dataset has been georefer-

enced, atmospherically corrected, and composited to

15-day maximum NDVI values. To correct for the solar

zenith angle perturbation, GIMMS used the empirical

mode decomposition (EMD) (Pinzón et al., 2005). Cor-

rection for stratospheric aerosols was made for the two

anomalously high aerosol burden periods resulting

from emissions from two major volcano eruptions

(El Chichon, April 1982 to December 1984; and Mt

Pinatubo, June 1991 to December 1994). To further

reduce cloud contamination in the study area, we

aggregated the GIMMS data into monthly composites

by selecting, for each pixel of each month, the max-

imum value from the 15-day composite GIMMS data.

Intercomparison and trend analysis of climate datasets

We compared several datasets for each climate variable

that is required as an input for the ecosystem models.

The details for each datasets utilized are listed in Table

1. For regional studies in locations that have a low

density of meteorological stations, such as the Amazon

basin, it is preferable to use satellite-derived climate

Fig. 1 (a) Mean monthly climatology of the International

Satellite Cloud Climatology Project (ISCCP) shortwave radiation

(solid line in upper panel), Global Precipitation Climatology

Project (GPCP) precipitation (bars in the lower panel), and

CRU temperature (solid line in lower panel) within the study

region. (b) Map of GPCP mean annual precipitation (1984–2002).

The square area surrounded by thick lines is the study area.

Table 1 Descriptions for each dataset

Parameter Dataset

Spatial

resolution

Time

resolution

Time

period Method

Temperature

CRU 0.51 Monthly 1901–2002 i

UD 0.51 Monthly 1950–1999 i

NCEP ca. 2.51 6-Hourly 1948–present m

Precipitation

CRU 0.51 Monthly 1901–2002 i

GPCP 2.51 Monthly 1979–present s,i

NCEP ca. 2.51 6-Hourly 1948–present m

UD 0.51 Monthly 1950–1999 i

Shortwave radiation

ISCCP 280 km Monthly 1983/1987–

2004

m

NCEP ca. 2.51 6-Hourly 1948–present m

Cloud cover

ISCCP 280 km Monthly 1983/1987–

2004

m

NCEP ca. 2.51 6-Hourly 1948–present m

Note that the descriptions are based on the available data. The

characters ‘i’, ‘s,’ and ‘m’ in the method column indicate the

method used to produce the gridded data set: interpolation (i),

satellite data (s), and climate model (m).
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data to capture the heterogeneity in meteorological

observations for the overall region. Some surface-level

climate variables, however, are difficult to measure

directly from satellite sensors (e.g. incident shortwave

radiation), and thus we need to use datasets that are

interpolated from ground observations, or modeled

datasets as alternatives to satellite-measured climate

datasets. The uncertainty in the interpolated datasets

depends on the density of meteorological stations in the

network, and measurement errors at a single station can

have a substantial influence on interpolated estimates

for regions with sparse station coverage (Malhi &

Wright, 2004). Modeled datasets can also have large

systematic errors, and thus the results deduced from the

modeled climate datasets (e.g. reanalysis datasets) can

be biased (Zhao et al., 2006). Therefore, our approach is

to first identify common trends in the available datasets,

and then compare the trends among datasets to obtain

reliable climate trends.

Temperature. We used three temperature datasets: CRU

TS 2.1 (Mitchell & Jones, 2005), the Willmott and

Matsuura datasets (Legates & Willmott, 1990b) from

the University of Delaware (Willmott & Matsuura,

2001), and the NCEP NCAR Reanalysis datasets

(Kalnay et al., 1996) (hereafter, referred to as CRU,

UD, and NCEP, respectively). Both CRU and UD are

interpolated datasets derived from data records from

ground observation networks using different

interpolation algorithms. The NCEP dataset is the

product of a global reanalysis that ingests datasets

including satellite data, sonde data, aircraft data,

surface observations, sea surface temperature data,

and other observations. NCEP has many output

parameters with varying degrees of accuracy. Kalnay

et al. (1996) ranked the variables by the extent of model

dependency and ranked surface air temperature as the

variable on which both models and observations have

the most influence, and is therefore the most reliable

parameter within the NCEP datasets.

Precipitation. We used the Global Precipitation

Climatology Project (GPCP) Version 2 combined

precipitation dataset (Adler et al., 2003) (hereafter,

refer to as GPCP), as well as precipitation data from

the CRU, UD (Legates & Willmott, 1990a), and NCEP

datasets. GPCP combines several satellite and gauge

network datasets to calculate a monthly gridded

precipitation data product. NCEP does not ingest

surface observations of precipitation from gauges, and

thus was categorized as a model-derived variable by

Kalnay et al. (1996), which means that it is less reliable

relative to the other NCEP parameters. Both CRU and

UD precipitation data are interpolated (as with

temperature) from ground-based observation records.

Shortwave radiation and cloud cover. Currently, there is no

method to directly measure the downward shortwave

radiation fluxes at the land surface level using satellites.

There are, however, two model-derived datasets

available for long-term analysis: the International

Satellite Cloud Climatology Project (ISCCP) datasets

(ISCCP-FD) (Zhang et al., 2004), and the NCEP

shortwave radiation dataset. ISCCP provides incident

shortwave radiation flux data at the surface level from

1984 to present. ISCCP shortwave radiation data are

calculated using the radiative transfer code from the

GISS Global Circulation Model (GCM), which ingests

multiple global climate datasets. The NCEP downward

shortwave radiation dataset is also categorized by

Kalnay et al. (1996) as a model-derived variable,

similarly to NCEP precipitation. The comparison,

reviews, and validation for the ISCCP and NCEP

datasets were thoroughly addressed by Hicke (2005).

We also used cloud cover datasets from ISCCP and

NCEP in place of shortwave radiation as an input for

the LPJ ecosystem model. As with the downward

shortwave radiation flux, cloud cover in the NCEP

dataset is categorized as a model-derived variable. We

did not use cloud cover data from CRU, as none of the

ground stations used for interpolation were located

inside the study region. Furthermore, the CRU cloud

cover data are derived from cloud cover observations

collected from 1971 to 1995, and sunshine duration

measurements from 1996 to 2001, with no overlapping

period between the two inputs (Mitchell & Jones, 2005).

Since the detection of trends in cloud cover from the

ISCCP dataset is prone to artifacts at the edges of the

field of view of the satellites from which these

observations are derived (Evan et al., 2007), we used

the Earth Radiation Budget Experiment (ERBE) S-10N

NF Edition 3 dataset (Barkstrom, 1984) and Clouds and

the Earth’s Radiant Energy System (CERES) ES-4

datasets (Wielicki et al., 1996) to validate the results of

the trend analysis of cloud cover data from ISCCP and

NCEP datasets. The ERBE S-10N NF Edition 3 datasets

(hereafter, referred to ERBE) includes top-of-the-

atmosphere (TOA) reflected shortwave radiation,

albedo, and total irradiance data measured by the

nonscanner instrument carried by the Earth Radiation

Budget Satellite (ERBS) spacecraft, and are available

from 1984 to 1999. We calculated monthly downward

shortwave radiation from the 51 grid of ERBE data

measured by the middle field-of-view (MFOV)

detector. CERES is the project that succeeded ERBE in

measuring the global radiation budget. CERES ES-4

datasets represent one of the radiation flux products
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derived from CERES instruments carried by TRMM,

Terra, and Aqua spacecraft, and were calculated using

the same algorithm used for ERBE data. We averaged

the monthly CERES data from the products observed by

the available sensors (Terra-FM1, Terra-FM2, Aqua-

FM3, and Aqua-FM4).

Ecosystem model experiments

NPP variations are generally representative of corre-

sponding variations in NDVI (Schloss et al., 1999). We

calculate NPP from three ecosystem carbon models:

CASA (version 2003.04.29) (Potter et al., 1993), Biome-

BGC (version 4.2) (Thornton et al., 2002), and LPJ

(version 1.2) (Sitch et al., 2003; Gerten et al., 2004).

Detailed features of the three models are summarized

in Table 2.

CASA is a diagnostic model that requires NDVI data

as an input, from which LAI and fraction of absorbed

photosynthetically active radiation (PAR) by vegetation

(FPAR) are estimated using empirical equations. In

CASA, NPP is calculated as the product of maximum

Light Use Efficiency (emax), PAR, FPAR, and climate-

driven regulation factors, which are functions of air

temperature and soil water content. Optionally, CASA

can use CO2 concentration data to simulate the CO2

fertilization effect on NPP. However, since the modeling

of the CO2 fertilization effect in CASA is very simple,

Table 2 Comparison of components of the three models used in this study (CASA, Biome-BGC, and LPJ)

CASA Biome-BGC LPJ

Model type Diagnostic model Prognostic model Prognostic model with dynamic

vegetation

Climate input Air temperature

Precipitation

Shortwave radiation

Maximum air temperature

Minimum air temperature

Precipitation

Shortwave radiation

VPD

Air temperature

Precipitation

Cloud cover

Wet day

Photosynthesis model Monteith-type LUE

model (Monteith,

1972)

Farquhar biochemical model

(Farquhar et al., 1980) with

Jarvis-type empirical stomatal

conductance model (Jarvis, 1976)

Combination of biochemical model

(Haxeltine & Prentice, 1996)

based on Farquhar et al. (1980)

and Ball-type empirical stomatal

conductance model (Ball et al.,

1987)

emax or Vcmax* Predefined biome-

specific emax

Vcmax from leaf nitrogen and

Rubisco activity

Vcmax from optimal nitrogen

allocation with canopy

(Haxeltine & Prentice, 1996)

Parameters constraining

photosynthesis

Shortwave radiation

CO2 concentration

(optional)

Air temperature

Soil water content

FPAR

Shortwave radiation

CO2 concentration

Soil water content

Air temperature

VPD

LAI

Leaf nitrogen content

Shortwave radiation

CO2 concentration

Soil water content

Air temperature

FPAR

LAI

Evapotranspiration model De Marsily (1986) Penman–Monteith equation with

Jarvis stomatal conductance

model (Jarvis, 1976)

Equilibrium evapotranspiration

restricted by water availability

Autotrophic respiration

model

Not calculated Maintenance respiration calculated

by Q10 model regulated by the

nitrogen contents.

Growth respiration of prescribed

ratio of carbon storage rate

Maintenance respiration calculated

by Q10 model accounting for

acclimation with prescribed

coefficient for each plant

functional type.

Growth respiration of 25% of the

residual of GPP subtracted from

maintenance respiration

Reference Potter et al. (1993) Thornton et al. (2002) Sitch et al. (2003) and Gerten et al.

(2004)

*emax is the canopy-level maximum light use efficiency. Vcmax is the maximum carboxylation rate of Rubisco.

LAI, Leaf Area Index; VPD, Vapor Pressure Deficit; FPAR, fraction of absorbed photosynthetically active radiation by vegetation.
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with photosynthesis linearly increasing with CO2 con-

centrations, we did not use this feature of CASA in our

study.

Biome-BGC is a prognostic biogeochemical model

driven by climate data for the prescribed land cover.

Biome-BGC uses the Farquhar biochemical photosynth-

esis model (Farquhar et al., 1980) to calculate GPP, and

estimates NPP as the remainder of GPP subtracted from

autotrophic respiration, which is a function of tempera-

ture and biomass. Stomatal conductance in Biome-BGC

is modeled using a Jarvis-type model (Jarvis, 1976) as

the product of predefined maximum stomatal conduc-

tance and climate regulation factors [shortwave radia-

tion, air temperature, soil water potential, and vapor

pressure deficit (VPD)]. Globally applicable models

sometimes require tuning for regional applications

(Thornton et al., 2002). In this study, the main model

and ecophysiological parameters of Biome-BGC were

from Ichii et al. (2007), which adjusted the submodels

and parameters to match the Tapajós flux data (Saleska

et al., 2003). Also, to match the seasonal variation in GPP

measured at the Tapajós flux site, we added a submodel

of seasonal variations in percent of leaf nitrogen in

Rubisco, following Ichii et al. (2007). A combined satel-

lite and model study (Ichii et al., 2007) and an in situ plot

study (Nepstad et al., 1994) both suggested that very

deep root systems (deeper than 5 m) exist in the Ama-

zon tropical forests. Thus, we set the rooting depth at

5 m (vs. the default value of 1 m).

LPJ is also a prognostic model, but includes a dy-

namic biogeography submodel, which determines the

land cover implicitly from climate data. The plant

functional types in the Amazon were mostly categor-

ized as tropical broad-leaved evergreen by the LPJ

dynamic biogeography submodel. As with Biome-

BGC, LPJ uses the Farquhar biochemical photosynthesis

model (Haxeltine & Prentice, 1996), and subtracts auto-

trophic respiration from GPP. Autotrophic respiration is

controlled by air temperature. Stomatal conductance in

LPJ is estimated from a Ball-type conductance model

(Ball et al., 1987). We did not adjust any of the default

parameters.

To obtain the initial allocation of carbon in an ecosys-

tem (i.e. the allocation to leaves, stems, roots, soil, etc.),

carbon ecosystem process models require a spin-up

period, during which the model runs until it reaches

an equilibrium state for the desired climate conditions.

We used climate data from the run period (i.e.

1984–2002, except for the experiments that used UD

data from 1984 to 1999) for the spin-up for each model.

Using averages from the climate data for the entire

study period to spin-up the models would have led to

a value of 0 for the total net ecosystem exchange (NEE)

from 1984 to 2002.

To identify the climate variable(s) driving the ob-

served trend in vegetation dynamics over the western

Amazon forests, we followed the methodology adopted

by Ichii et al. (2005), in which the ecosystem model runs

are driven by changing a single climate variable while

keeping the other climate variables fixed. The climate

variables that remain fixed during the modeling experi-

ments are calculated as monthly averages for 1984–2002

from the selected datasets, including CRU for tempera-

ture, GPCP for precipitation, and ISCCP for radiation

and cloud cover. CRU temperature data were selected

because they are derived from interpolation of at least

20 stations in the study region from 1984 to 2002, and

therefore are deemed to reliably represent the monthly

temperature climatology for the western Amazon. An

intercomparison study of global precipitation datasets

indicated that the latitudinal average of GPCP showed

the most reasonable profile (with the least number of

outliers) relative to the other datasets (Fekete et al.,

2004). Shortwave radiation and cloud cover were se-

lected from the ISCCP dataset, as Hicke (2005) showed

these data agreed more closely with observations than

NCEP radiation. Figure 1a shows the seasonal climatol-

ogy of the study region from CRU temperature, GPCP

precipitation, and ISCCP shortwave radiation.

For Biome-BGC, which uses daily rather than

monthly climate inputs, we also calculated daily

anomalies. The daily anomalies were calculated as

deviations from the monthly average of temperature,

precipitation and solar radiation from the NCEP data-

set, which is the only dataset that provides daily values.

For LPJ, we used the weather generator (Gerten et al.,

2004) to derive daily climate data from the monthly

climate inputs.

The observed trends in climate variables are some-

times only detectable during specific months, and ana-

lysis of yearly averages can be insufficient to

understand the phenomenon of climate change. For

example, Chagnon & Bras (2005) found a shift in the

seasonality of precipitation from a gauge record that

spanned 75 years. Since the responses of models to

climate change can vary depending on the season, for

all the modeling experiments we calculated both annual

and monthly trends in NPP.

To assess the influence of elevated CO2 concentration

on the modeled NPP, we used the CO2 concentration

data observed at Mauna Loa, Hawaii, as no continuous

data record was found at a more proximate location for

our study period. While there are almost certainly

differences in the absolute CO2 concentrations between

Mauna Loa and the Amazon basin, the relative change

in concentrations over time both at Mauna Loa and in

the Amazon basin is expected to be consistent. Thus, the

results of the simulations using the Mauna Loa CO2
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concentration should be deemed appropriate for the

purpose of our study.

Tests for trend analysis

To detect trends in climate and carbon cycling, we used

the Mann–Kendall trend test (Kendall, 1938). Compared

with the linear regression trend test, the Mann–Kendall

trend test has the following advantages. First, the

Mann–Kendall trend test does not require the assump-

tion of normality in the variance. Perturbation events to

the climate system such as the Mt. Pinatubo eruption or

ENSO events could invalidate the normal distribution

assumption. Second, because the Mann–Kendall trend

test relies on rank-based statistics, an anomalous outlier

on the edge of a time-series data record does not have a

strong effect on the test result.

The slope of the trends was calculated from the

Kendall–Theil robust line (Helsel & Hirsch, 1992). The

Kendall–Theil robust line is defined as the line whose

slope is the median of all possible pair-wise slopes of

the data, and is on the median of both variables. Hence,

the Kendall–Theil robust line is also relatively insensi-

tive to outliers on the edge.

Results and discussion

NDVI trend

The regional average of the annual mean NDVI for the

study region shows a significant positive trend

(P-valueo0.05) (Fig. 2a). The large drop in annual mean

NDVI observed in 1991 was due to the eruption of

Mt. Pinatubo. A comparison of monthly average NDVI

between two different periods (1982–1990 and 1993–

2003) indicates that the positive trend in annual mean

NDVI was due mainly to decadal increases in NDVI

between the months of August and December, with

November and December showing especially strong

significant positive trends (P-valueo0.05) (Fig. 2b).

The biggest limitation of optical remote sensing ana-

lysis in the humid tropics is cloud contamination,

especially for data with moderately coarse resolution

such as AVHRR. Although we made monthly compo-

site NDVI data to minimize the cloud contamination

effect, residual contamination may still be present and

could result in artificial trends. The saturation of NDVI

over dense forests also makes trend analysis difficult.

For example, during the months of June and July,

monthly NDVI values are close to 0.8, suggesting that

observed increases in NDVI are difficult to interpret

(Fig. 2b). However, a consistent shift in seasonal cycle is

apparent between the two decades (Fig. 2b), with strong

increases in NDVI during the dry season.

Comparison of climate datasets

Temperature trends. Positive trends in temperature are

present in the interpolated datasets (CRU and UD) but

not in NCEP (Fig. 3). Victoria et al. (1998) also reported a

positive trend result in the Amazon basin since the

1970s, and found that temperature in the Amazon

basin has increased at a rate similar to the overall

warming rate for the southern hemisphere. The

average monthly temperature values for the

interpolated datasets (CRU and UD) are very close,

but higher than NCEP by approximately 1.5 1C. For

the study period from 1984 to 2002, only CRU showed

a statistically meaningful positive trend of 0.051 yr�1

Fig. 2 (a) Interannual variability in the yearly mean Normal-

ized Difference Vegetation Index (NDVI) for the study region

from 1982 to 2003. (b) Monthly average of NDVI from 1982 to

1990 (broken line) and from 1993 to 2003 (solid line). Values at

each time step are the average value of all grid cells inside the

study region.
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(Table 3). Malhi & Wright (2004) also found a positive

temperature trend in the CRU dataset for the period

1976–1998 in the central Amazon, which includes our

study region.

Precipitation trends. The precipitation trend for the study

period (1984–2002) was significantly positive in GPCP

(0.06 mm day�1 yr�1), but no significant trend was

detected in the CRU and UD datasets (Table 3). A

significant negative trend was detected in NCEP

precipitation data (�0.10 mm day�1 yr�1). NCEP data

clearly deviate from the other three datasets (CRU,

UD, and GPCP) until 1992 (Fig. 4). Such a discrepancy

in NCEP precipitation data was also reported in

Marengo et al. (2008).

There are many publications that discuss trends in

precipitation in the Amazon basin. For example, the

northern Amazon basin has shown a negative trend in

precipitation since 1950, but a positive trend has been

observed in the southern Amazon basin (Marengo,

2004). Malhi & Wright (2004) investigated the CRU

precipitation dataset for the existence of trends in

rainfall in the pan-tropics, but found no significant

trend in the Amazon from 1960 to 1998. Results of

those publications are highly dependent on the

datasets, study period, and study region used, and are

complicated by the heterogeneity of precipitation in the

Amazon.

Shortwave radiation and cloud cover trend. For the study

period, ISCCP and NCEP showed similar significant

positive trends (0.48 W m�2 yr�1) in shortwave radiation

(Table 3), although the magnitudes of the monthly

averages are quite different from each other (Fig. 5a).

Consistent with the increasing trends in short-

wave radiation, both ISCCP and NCEP cloud cover

data show significantly negative trends (ISCCP:

�0.36% yr�1; NCEP: �0.13% yr�1). Cloud cover in the

two datasets also has very different monthly average

magnitudes (Fig. 6).

The ERBE and CERES data also showed increasing

trends in downward shortwave radiation in the 1980s

and 1990s (Fig. 5b). ERBE and CERES data represent the

radiation flux at the Top of the Atmosphere (TOA)

rather than at the surface. However, since the amount

of shortwave radiation absorbed by the atmosphere is

small compared with the amount absorbed by the land

surface, the positive trends found in the ERBE and

Fig. 3 Interannual variability in the yearly average temperature

for each climate dataset from 1984 to 2002 (CRU, NCEP, and UD).

Values at each time step are the average value of all grid cells

inside the study region.

Table 3 The trend in the yearly average of each climate

dataset

Parameter Dataset Trend

Temperature (deg. yr�1) CRU 0.05*

UD 0.04

NCEP �0.01

Precipitation (mm day�1 yr�1) CRU 0.03

GPCP 0.06*

NCEP �0.10*

UD �0.02

Shortwave radiation (W m�2 yr�1) ISCCP 0.48*

NCEP 0.48*

Cloud cover (% yr�1) ISCCP �0.36*

NCEP �0.13

*Indicates that the P-value of the Mann–Kendall trend test was

o0.05.

Fig. 4 Interannual variability in the yearly average precipita-

tion for each climate dataset 1984–2002 [CRU, NCEP, UD, and

Global Precipitation Climatology Project (GPCP)]. Values at each

time step are the average value of all grid cells inside the study

region.
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CERES datasets also imply an increase in absorbed

shortwave radiation at the surface over the two

decades analyzed in this study.

Globally, while solar dimming has been observed

through the 1980s (Stanhill & Cohen, 2001), solar

radiation has been shown to be increasing since the

late 1980s (Wild et al., 2005). In the tropics, the

increasing trend in incoming shortwave radiation was

reported from satellite observations and attributed to

decadal time-scale strengthening of the tropical Hadley

and Walker circulations (Chen et al., 2002; Wielicki et al.,

2002). In addition to wide scale climate change, changes

in the regional-scale hydrologic cycles (shallow

cumulus cloud and precipitation patterns) were

reported as a result of deforestation (Chagnon et al.,

2004; Chagnon & Bras, 2005). These observations

strengthen the conclusion that the shortwave radiation

budget for the Amazon basin is changing, as a

consequence of climate change and/or land use change.

Modeling experiments

Seasonal variation in simulated monthly NPP. For all three

models, Fig. 7 shows that the minimum mean monthly

NPP occurs in July, as does the minimum in solar

radiation (Fig. 1a). On the other hand, the month in

which the peak in mean monthly NPP occurs differs

among the three models, with the peak occurring in

October, January, and March for CASA, Biome-BGC,

Fig. 6 Interannual variability in the yearly average cloud cover

for each climate dataset from 1984 to 2002 [NCEP and Interna-

tional Satellite Cloud Climatology Project (ISCCP)]. Values at

each time step are the average value of all grid cells inside the

study region.

Fig. 5 (a) Interannual variability in the yearly average short-

wave radiation at the surface for each climate dataset from 1984

to 2002 [NCEP and International Satellite Cloud Climatology

Project (ISCCP]. (b) Interannual variability in the yearly average

downward shortwave radiation at the top of the atmosphere

from Earth Radiation Budget Experiment (ERBE) (solid line) and

Clouds and the Earth’s Radiant Energy System (CERES) (broken

line). Values at each time step are the average value of all grid

cells inside the study region.

Fig. 7 Monthly mean net primary production (NPP) for each

model (CASA, Biome-BGC, and LPJ) from 1984 to 2002. Values

shown are the average value of all grid cells inside the study region.
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and LPJ, respectively. Overall, the seasonal cycle of NPP

from all three models peaks in the dry season, with

minimum values occurring during the wet season. This

pattern indicates that water availability did not limit

monthly NPP during the dry season, but shortwave

radiation did limit monthly average NPP during the

wet season. Thus, shortwave radiation appears to be the

primary driver of seasonal patterns in NPP. These

simulated seasonal cycles are similar to the observed

patterns in GPP at the Tapajós site (Hutyra et al., 2007).

Ichii et al. (2007) explained nonwater limitations using

Biome-BGC with a deep rooting soil depth (45 m).

Other than seasonal cycles of shortwave radiation, leaf

production in the dry season (Hutyra et al., 2007) and

increases in diffusive radiation caused by aerosols

resulting from biomass burning (Oliveira et al., 2007)

should also contribute to high monthly NPP in the dry

season, but none of the models used in this study

accounted for them.

Elevated CO2 concentration experiments. The modeling

experiments to examine the effect of increased CO2

concentrations using both Biome-BGC and LPJ show a

monotonous positive trend in NPP that corresponds

with the monotonous increase in atmospheric CO2

concentrations (Fig. 8a). The rate of increase in annual

NPP is 4.66 (g C m�2 yr�1) yr�1 for Biome-BGC and

2.67 (g C m�2 yr�1) yr�1 for LPJ, and is statistically

Fig. 8 Net primary production (NPP) time series for each model experiment for (a) changing CO2 concentrations, (b) changing

temperature, (c) changing precipitation, and (d) changing shortwave radiation or cloud cover. The solid, broken, dashed, and dash-dot

lines represent the different datasets listed under each panel. The unit for the vertical axes is g C m�2 yr�1. Note that we did not

implement the CO2 experiment for CASA because of its simplicity, and thus there is no result shown for CASA in (a), the changing CO2

experiment panel. Values at each time step are the average value of all grid cells inside the study region.
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significant per the Mann–Kendall trend test (Table 4).

Note that the CO2 concentration experiment was not

implemented for CASA, although given the linear

relationship between CO2 concentrations and

photosynthesis in the model, one would expect the

results from CASA to show a linear increase in NPP

that tracks the increase in the CO2 concentration data.

Temperature sensitivity experiments. All models simulate

higher NPP when using temperature from NCEP rather

than from CRU and UD (Fig. 8b), primarily because the

lower air temperature in the NCEP data (Fig. 3) reduced

the amount of autotrophic respiration. Interannual

fluctuations in autotrophic respiration are a function

of air temperature and drive the interannual variation

in NPP simulated from Biome-BGC and LPJ (Table 2). In

contrast, CASA calculates NPP directly, as opposed to

via GPP, resulting in smaller interannual fluctuations in

NPP than for the Biome-BGC and LPJ models. In addi-

tion, the air temperature in the study region during the

period analyzed displayed small interannual and

seasonal variability, remaining close to the optimum

temperature for photosynthesis defined in the CASA

model (CASA defines the optimum temperature for

photosynthesis as the temperature recorded when

NDVI reaches the annual maximum). The higher

variability of temperature data in the UD dataset (Fig.

3) does not have a large impact on NPP variability for

all three models, because of reduced sensitivity to

temperature in the models. The variability in NPP is

similar in each model for all three of the temperature

datasets used in the modeling analysis.

Precipitation sensitivity experiments. The year-to-year

variations in NPP as a function of the precipitation

dataset are dependent on the model used, with the

variations in NPP simulated from LPJ being higher

than those from CASA and Biome-BGC (Fig. 8c).

Within each model, the interannual variation in NPP is

very similar for all of the precipitation datasets, except for

NCEP, which was an outlier in the CASA and Biome-

BGC simulations. The trends are very different among

the models and climate datasets (Table 4). Significant

negative trends in annual NPP were found when using

the NCEP-CASA [�1.20 (g C m�2 yr�1) yr�1] and NCEP-

LPJ [�2.81 (g C m�2 yr�1) y�1], which responded to the

decreasing trend observed in the NCEP precipitation data

(�0.10 mm day�1 yr�1). On the other hand, the NPP

modeled by Biome-BGC showed a significant positive

trend only when using the UD precipitation dataset

[1.93 (g C m�2 yr�1) yr�1].

Shortwave radiation or cloud cover experiments. All model-

ing experiments showed positive trends in annual

NPP driven by increases in shortwave radiation

and/or declines in cloud cover (Table 4). A significant

positive trend in NPP was calculated in the simula-

tions from NCEP-CASA [3.17 (g C m�2 yr�1) yr�1],

ISCCP-CASA [2.18 (g C m�2 yr�1) yr�1], and ISCCP-LPJ

[6.35 (g C m�2 yr�1) yr�1] (Fig. 8d). Biome-BGC was less

sensitive to shortwave radiation than CASA and LPJ.

Therefore, the increasing trend in shortwave radiation

was the only climate factor which clearly and consistently

drove the increasing trend in annual NPP.

Monthly trends of model outputs and climate datasets

The trends in monthly NPP, as calculated by the three

models, are summarized in Fig. 9. The increases in atmo-

spheric CO2 concentration recorded over the study per-

iod had a positive impact on the monthly NPP trend for

all seasons in both Biome-BGC and LPJ (Fig. 9a). Thus,

the increasing trend in CO2 concentrations cannot explain

the positive trends in NDVI observed in specific months.

The temperature experiments with CRU data showed

the strongest temperature-related impact on NPP for all

three models. All the temperature experiments showed

small negative trends for the months from July to

October (Fig. 9b). So, none of temperature experiments

can explain the positive trend in NDVI observed during

these months.

Similar to the precipitation effects on annual NPP

(Fig. 8), the impacts of precipitation on the monthly

NPP trends varied considerably, depending on the

input dataset, even when using the same model for

the simulation (Fig. 9c). Among these experiments, only

the Biome-BGC experiment driven by UD precipitation

Table 4 The slope of the trend [(g C m�2 yr�1) yr�1] in the

yearly NPP calculated from each ecosystem model and each

climate dataset

Data set CASA BGC LPJ

CO2 4.66* 2.67*

Temperature

CRU �0.54* �4.01 �3.49*

NCEP �0.24* �0.17 0.30

UD �0.47 �1.18 �2.75

Precipitation

CRU 0.59 0.99 0.88

NCEP �1.20* 0.10 �2.81*

UD 0.98 1.93* 0.59

GPCP �0.74 �1.12 �1.30

Shortwave radiation or cloud cover

NCEP 3.17* 1.42 2.34

ISCCP 2.18* 0.71 6.35*

*Indicates that the P-value of the Mann–Kendall trend test was

o0.05.
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data, which showed a weak positive trend in monthly

NPP from September to February, could be a candidate

to explain the observed increases in NDVI.

The radiation/cloud cover experiments simulated

strong positive trends in NPP from July to December

with CASA and LPJ driven by the NCEP and ISCCP

datasets, and with Biome-BGC driven by the NCEP

(Fig. 9d). These results suggest that the increasing trend

in shortwave radiation is the most likely driver of the

positive NDVI trends observed from August to Decem-

ber, as opposed to changes in CO2 concentrations,

temperature, or precipitation.

Sensitivity test for model response to changes in climate
factors

Increasing shortwave radiation from NCEP and ISCCP

caused an increase in NPP from July to December in the

CASA and LPJ simulations, while only the NCEP

shortwave radiation data resulted in a positive

trend in the Biome-BGC simulations (Fig. 9d).

Based on the Biome-BGC simulations, the UD pre-

cipitation data could also explain the positive NDVI

trends from October to December (Fig. 9c). These dif-

ferences in the effects of climate on simulated NPP

originated from the varying model sensitivities to the

climate factors.

The responses to variations in temperature were very

different among models (Fig. 10a). The NPP simulated

by CASA peaked around the optimum temperature for

photosynthesis of 26 1C. The NPP modeled by Biome-

BGC also peaked at 26 1C, due to the difference in the

rate of increase in photosynthesis vs. autotrophic re-

spiration as a function of higher temperatures. LPJ, in

contrast, showed a monotonous decrease in response to

increasing temperature because photosynthesis in-

Fig. 9 Trends in monthly net primary production (NPP) (in g C m�2 month�1 yr�1) for the three models (CASA, Biome-BGC, and LPJ) for the

period from 1984 to 2002 for each climate variable [(a) CO2, (b) temperature, (c) precipitation, (d) shortwave radiation or cloud cover]. The names

of the dataset used in each experiment are listed under each panel. Values shown are the average value of all grid cells inside the study region.
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creased more slowly compared with autotrophic re-

spiration.

The models were most sensitive to variations in

precipitation (Fig. 10b). CASA NPP decreased gradu-

ally in response to lower precipitation. On the other

hand, Biome-BGC and LPJ showed steep drops below a

critical level of annual precipitation, with Biome-BGC

dropping at a precipitation level of 1800 mm or less, and

LPJ dropping at a level of 1000 mm or less, with the

difference due to the photosynthesis submodels within

these two models. All of the models have multiplier

functions in their photosynthesis submodels that limit

photosynthesis in response to lack of water, which is

represented by soil moisture deficit. Figure 11 shows the

dependency of such photosynthesis regulation func-

tions on soil moisture levels, which in turn are driven

by precipitation levels such as those shown in Fig. 10b.

As compared with NPP, the photosynthesis regulation

function in Biome-BGC is more sensitive to precipita-

tion, and regulates photosynthesis strongly when an-

nual precipitation is below a critical threshold of

1300 mm. This critical annual precipitation threshold

regulating photosynthesis depends on the soil parame-

terization, indicating that that proper parameterization

of the rooting depth defined in Biome-BGC is very

important (Ichii et al., 2005). The average yearly amount

of evapotranspiration simulated for the study region

was 1486 mm in CASA, 2173 mm in Biome-BGC, and

823 mm in LPJ, when using CRU temperature, GPCP

precipitation, and ISCCP shortwave radiation. The

average yearly precipitation in the study region was

2369 mm in GPCP. Since observations at Manaus indi-

cate that 54% of rainfall (1279 mm) was lost by evapo-

transpiration from September 1995 to August 1996

(Malhi et al., 2002), it is likely that the evapotranspira-

tion calculated by Biome-BGC was too high, suggesting

that our Biome-BGC experiments adjusted for Tapajós

flux data are still too sensitive to precipitation for the

Fig. 10 Model sensitivity test of net primary production (NPP)

for three models (CASA, Biome-BGC, and LPJ) by changing

climate, (a) temperature, (b) precipitation, and (c) shortwave

radiation. Values shown are the average value of all grid cells

inside the study region.

Fig. 11 Sensitivity of yearly average of photosynthesis regula-

tion functions from three models (CASA, Biome-BGC, and LPJ).

Values shown are the average value of all grid cells inside the

study region.
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western Amazon basin, resulting in a higher critical

precipitation point for Biome-BGC compared with the

other models. Gerten et al. (2004) showed good agree-

ment between observed and LPJ-modeled annual run-

off, but the seasonal variation of runoff from LPJ was

not consistent with the observed data. The peak in LPJ-

modeled runoff was in the wet season, while the

observed peak occurred during the dry season. For

the same reason described by Ichii et al. (2007), the

default soil depth in LPJ of 1.5 m was too shallow and

needed to be adjusted.

Hydraulic redistribution is another mechanism that

regulates soil moisture sensitivity in the Amazon forest

(Lee et al., 2005), explaining why satellite observations

did not show a clear impact on vegetation condition as a

result of the severe drought recorded in 2005 (Saleska

et al., 2003), when the rainfall recorded in the Solimões

river basin was 100 mm month�1 lower than normal

from May to September. However, none of the three

models provides a mechanism for hydraulic redistribu-

tion. This is another reason that the critical annual

precipitation amount should be set at o1500 mm yr�1

in the western Amazon.

Annual NPP increases linearly in response to in-

creases in shortwave radiation both in Biome-BGC

and LPJ (Fig. 10c). It has been reported that the effi-

ciency of photosynthesis is higher under diffuse radia-

tion than direct radiation (Gu et al., 2003). But, using

model simulations, Alton et al. (2007) reported that

enhancement of LUE cannot compensate the decrease

of total amount of shortwave radiation for dense cano-

py forests. Thus, the conclusion that NPP increase were

caused by the increase of shortwave radiation cannot be

affected by considering fraction of diffusive irradiance

to total shortwave radiation. Furthermore, diffuse irra-

diance caused by the aerosols from biomass burning on

cloud free days (Oliveira et al., 2007) can support a

linearly increasing response in NPP to shortwave radia-

tion. Compare with cloud scattering, aerosol scattering

make smaller change in the total amount of shortwave

radiation because of the characteristic of more forward

scattering (Alton et al., 2007).

CO2 fertilization effect vs. shortwave radiation

Nemani et al. (2003) explained an observed positive

trend in NPP over the Amazon region with a corre-

sponding increase in shortwave radiation. Lewis et al.

(2004b) suggested that the biomass increase could be

due to the CO2 fertilization effect and/or an increase in

shortwave radiation, because the biomass increase was

observed everywhere at the continental scale, while

other climate variables did not show spatially consistent

trends at such a wide scale. Our results from the Biome-

BGC and LPJ simulations suggest that shortwave radia-

tion, rather than the CO2 fertilization effect, increases in

temperature, or changes in precipitation, explain the

seasonal positive trends in NDVI observed from August

to December over the study period. In the model

simulations, the increase in NPP resulting from the

CO2 fertilization effect was higher than the radiation-

driven increase. The increase in NPP caused by the CO2

fertilization effect can be overestimated because a

strong dependency of light use efficiency upon tem-

perature is hypothesized in Farquhar models (Hickler

et al., 2008). In the Free Air CO2 Enrichment (FACE)

experiment, CO2 fertilization did not increase LAI,

although NPP increased as a result of enhanced light

use efficiency (Norby et al., 2005). While the FACE

experiment was not conducted in the tropics, it demon-

strated that it is possible that increases in NPP resulting

from CO2 fertilization cannot be detected by NDVI.

Biome-BGC and LPJ did not consider such an allometric

change corresponding to elevated CO2 concentrations,

and it is possible that the modeled increase in NPP

resulting from CO2 fertilization did not show up in the

monthly trend in AVHRR NDVI because additional

carbon was allocated to nonleaf biomass. Therefore,

our results do not exclude the possibility of a CO2

fertilization effect on tropical rainforests in the Amazon.

However, some issues still remain that both Biome-

BGC and LPJ cannot resolve. For example, both models

cannot explain some of the other effects mediated by

elevated atmospheric CO2 concentration, such as miner-

al nutrient availability, growth of lianas, and biodiver-

sity effects, which are also critical for predicting

ecosystem response in a CO2-rich world (Körner,

2004). Furthermore, other nutrients (e.g. nitrogen, po-

tassium, and phosphorus) can limit the growth of

vegetation in response to the CO2 fertilization effect,

complicating the full capture of nutrient cycles by

ecosystem models (Hungate et al., 2003). These factors

should be considered for future research and modeling

in the Amazon region.

Conclusions

In this study, we analyzed the trends in photosynthetic

activity in the western Amazon over the last two

decades to explain the observed NDVI trend through

the use of modeling experiments driven by multiple

climate datasets. The positive trend in GIMMS NDVI

was found to be primarily influenced by increases in

NDVI from August to December. We analyzed the

trends of climate variables from multiple datasets for

the period from 1984 to 2002, finding the trend in each

climatic parameter to vary depending on the dataset.

Among the temperature datasets, a significant positive
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trend was found in the CRU dataset. Among the pre-

cipitation datasets, the GPCP dataset showed a signifi-

cant positive trend and NCEP showed a significant

negative trend, while no significant trend could be

found in the CRU and UD datasets. Shortwave radia-

tion data showed increasing trends, while cloud cover

showed negative trends in both the ISCCP and NCEP

datasets.

We then used the different climate datasets to drive

three ecosystem models (CASA, Biome-BGC, and LPJ)

to simulate the trends in GIMMS NDVI by modeling

NPP. CO2 fertilization effects were evenly distributed

over the course of an entire year, but NDVI did not

show such an overall increase. Our results do not

exclude the possibility that potential gains in produc-

tivity resulting from CO2 fertilization effects were not

likely distributed to leaf production; however, we sug-

gest that changes in climate rather than CO2 fertilization

effects could explain the increasing trend in NDVI.

Specifically, a positive trend in shortwave radiation

and negative trend in cloud cover most strongly explain

the corresponding increase in NDVI, as our simulations

showed that these factors drove a simulated increase in

NPP for the same months (from August to December) in

which the increases in NDVI have been observed.
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